If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48=4x^2
We move all terms to the left:
48-(4x^2)=0
a = -4; b = 0; c = +48;
Δ = b2-4ac
Δ = 02-4·(-4)·48
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*-4}=\frac{0-16\sqrt{3}}{-8} =-\frac{16\sqrt{3}}{-8} =-\frac{2\sqrt{3}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*-4}=\frac{0+16\sqrt{3}}{-8} =\frac{16\sqrt{3}}{-8} =\frac{2\sqrt{3}}{-1} $
| 48=x4^2 | | 9=(4-c)3 | | 14.2=2(-5.8+x) | | 14.2=2(-5.8+x | | x+3×-12=12 | | 2x+52=3 | | 11^5z=5 | | -x^2+8=-2x+5 | | 98-4v=3v+7(-2v+8) | | x.15=66.85 | | 560=z.14 | | 3x=-7=8 | | 35.16=z.14 | | -x-5=3x11 | | x*100+(0.95*x*100)=65 | | 5k-3=17k | | |6x-1|=|7x| | | X*100+(0.95x)=65 | | (32000x+5400)/6x=(6x+5)/(x-1) | | y=12y+100 | | x+(0.095x)=65 | | M=12y+100 | | 3x^2+12x-14=0 | | 7x-3+2x=9x+8 | | |7x|+8=15 | | 3(x+3)-2=4 | | 33/4=1/2+w | | .208x=x-20.2 | | 4/20=n/42n= | | 3/w=12/7w= | | v^2-3v+30=0 | | (4x−5)5/7=32 |